Signal Conditioning Kits

Closeup of PRL-MNET-BMF populated as an 80 dB attenuator


  • DC Blocks
  • Feed-through 50 Ω Termination
  • Custom Attenuators
  • Multi-Pole Filters
  • Series Resistor, Inductor or R-L Network
  • Feed-through Decoupling Capacitor
  • Schottky Diode Line Terminator
  • Diode Detector
  • In Line Amplifier*
  • Diode Recovery Test Fixture*
  • Transistor Switching Test Fixture* 

* w/optional Bias Tee


  • π-Network, T-Network, or Multi-Pole Filter Footprint on Both Sides of PCB
  • Ground Plane and 50 Ω Transmission Line For Up To 5 GHz Bandwidth (SMA π model)
  • Accepts #1206 and #0805 size SMT Components
  • Populate With 1 to 28 Series or Shunt Components
  • Accepts Mini-Circuits™ HFCN-2700 Series Filters ( BNC π and T models only)
  • SMA or BNC Male/Female or Female/Female Connector Styles
  • Metal Enclosure Included for Shielding
  • 15 mm OD x 67.5 mm or 78 mm Length (BNC style)
  • 0.44" W x 0.37" H outside dimension, 1.50" or 2.06" L Modules (SMA style)


PRL's new Signal Conditioning Kits enable quick and easy fabrication of custom signal-conditioning circuits for RF and high-frequency digital signals. SMA models run up to 5 GHz, and BNC models run up to 3 GHz.

Applications include attenuators, filters, DC blocks, feed-thru 50 Ω terminations, etc. They can be used to build commonly-used circuits, such as a 50 Ω shunt termination, or to build one-of a-kind fixtures not commercially available. Three PCB designs (π, T and multi-pole) enable easy construction of nearly any series and or parallel network. The double-sided footprint (identical on both sides of the PCB) allows non-standard resistor, inductor, and capacitor values to be fabricated easily and economically. With the addition of a Bias Tee, active device test fixtures can be built as well.

In one example, we easily fabricated a 24 dB attenuator with non-standard impedance for the interface between a vacuum tube output and a TTL input circuit, using a two-stage design with discrete SMT resistors. In another example, we level-shifted a -6V to +10V pulse to 0V to +16V for driving a high impedance circuit. In this case, we constructed a simple DC Restorer using a coupling capacitor and a shunt Schottky diode to ground. 

Other examples include a feed-through decoupling capacitor, using one shunt capacitor to make an ideal low pass filter for noise reduction at I/O ports. The kits can be populated with as few as one series component, or as many as 28 series and shunt components, enabling a wide range of applications. 

Five available connector styles (BNC M/F, BNC F/F, SMA M/F, SMA F/F, and SMA M/M) and a low-profile design enable inline insertion into your transmission line, with or without cables. Male/male styles are available for the SMA π and T configurations only. A gender changer may be used to create a M/M style for other configurations.

For BNC models a metal tube enclosure provides protection and shielding. A toothed washer and nut secure the enclosure and provide DC contact. For SMA models an extruded rectangular enclosure is provided. The enclosure makes contact by friction, and can be secured with a cyanoacrylate adhesive (Superglue) or epoxy. Contact conductance ensures DC connectivity, and the capacitive coupling between the SMA body and enclosure provides AC connectivity.

Detail | Diagrams | Applications | Specifications | Datasheet

Qty. Item Description Price
Total price: $0.00